Math 776 Graph Theory Lecture Notes Extremal Graph Theory

Lectured by Lincoln Lu Transcribed by Sandy Johnson

Theorem 1 (Mantel 1907) The maximum number of edges in an n-vertex triangle-free simple graph is $\lfloor n^2/4 \rfloor$.

Definition 1 A graph G is **H-free** if G has no subgraph isomorphic to H.

A triangle-free graph is C_3 free.

Example 1 Bipartite graphs are C_3 free since they contain no odd cycles.

Proof of Theorem 1: Let G be a triangle-free graph. Let x be a vertex of G with maximum degree. Let k = d(x) be the degree of x. Let N(x) be the set of neighbors of x. Since G is triangle-free, there are no edges whose endpoints are both in N(x). $\overline{N(x)}$ forms a vertex cover. The number of edges e(G) satisfies

$$\begin{split} e(G) &\leq \sum_{y \in N(x)} d(y) \\ &\leq \sum_{y \in N(x)} k \\ &= k \cdot |\overline{N(x)}| \\ &= k(n-k) \\ &\leq \left(\frac{k + (n-k)}{2}\right)^2 \\ &= \frac{n^2}{4} \end{split}$$

Since e(G) is an integer,

$$e(G) \le \lfloor \frac{n^2}{4} \rfloor.$$

This upper bound is reachable by

$$K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}.$$
$$\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = \lfloor \frac{n^2}{4} \rfloor$$

Case 1: n is even

$$n = 2k$$

So,

$$\lfloor \frac{n}{2} \rfloor \lceil \frac{n}{2} \rceil = k^2$$

and

$$\lfloor \frac{n^2}{4} \rfloor = k^2$$

Case 2: n is odd

$$n = 2k + 1$$

So,

$$\frac{n}{2} \lfloor \lceil \frac{n}{2} \rceil = k(k+1) = k^2 + k$$

and

$$\lfloor \frac{n^2}{4} \rfloor = \lfloor \frac{(2k+1)^2}{4} \rfloor = \lfloor k^2 + k + \frac{1}{4} \rfloor = k^2 + k$$

Definition 2 A **Turán Graph** $T_{n,r}$ is a complete r-partite graph with n vertices whose partite sets differ in size by at most 1.

Theorem 2 (Turán, 1941) Among the n-vertex simple graphs with no r + 1 clique, $T_{n,r}$ has the maximum number of edges.

Lemma 1 Among simple r-partite graphs with n-vertices, the Turán graph is the unique graph with the most edges.

Proof of Lemma: Let G be a simple r-partite graph with the most edges.

- 1. G must be a complete r-partite graph.
- 2. Any two partite sets of G differ in size by at most one.

Prove 2. by contradiction. Say $|v_1| \leq |v_2| - 2$. Pick any vertex in v_2 and move it up into v_1 . Call this graph G'.

$$e(G') = e(G) - dx^{old} + dx^{new}$$

= $e(G) - (n - |v_2|) + (n - |v_1| - 1)$
= $e(G) + |v_2| - |v_1| - 1$
> $e(G)$

Contradiction.

Say n = ar + b, $0 \le b \le r$. So, $n = \underbrace{(a+1) + \ldots + (a+1)}_{b} + \underbrace{a + \ldots + a}_{r-b}$. Hence, $T_{n,r}$ has the most edges among *r*-partite simple graphs.

Proof of Turán Theorem:

Claim: Among graphs with no r + 1 clique, the maximum is achieved by an r-partite graph. For each G, construct H satisfies:

1. H is r-partite.

2.
$$e(G) \leq e(H)$$

Prove by induction on r.

Initial Case:

(r=1): G has no edges, i.e. G is K_2 free. This case is trivial. (r=2): Mantel's Theorem

Inductive Hypothesis:

Suppose the claim is true for r. For r+1, let G be a graph containing no K_{r+2} . Let x be a vertex with maximum degree k. The induced subgraph on N(x) contains no K_{r+1} . By inductive hypothesis, there is an r-partite graph H' with $e(G_{N(x)}) \leq e(H')$. Let H be the graph joining $\overline{N(x)}$ and H'.

1. H is an r + 1 partite graph.

2.

$$e(H) = |\overline{N(x)}|k + e(H')$$

$$\geq \sum_{y \in N(x)} dy + e(G_{N(x)})$$

$$\geq e(G).$$

By the lemma, $T_{n,r}$ has the most edges.

Definition 3 Turán number t(n,G) is the maximum number of edges that an *n*-vertex *G*-free simple graph can have.

$$t(n, K_r) = e(T_{n,r-1}) = {\binom{n}{2}} - b{\binom{a+1}{2}} - (r-1-b){\binom{a}{2}}$$

When b=0,

$$t(n, K_r) = \binom{n}{2} - (r-1)\binom{\frac{n}{r-1}}{2}$$

$$\approx (1 - \frac{1}{r-1})\binom{n}{2} + l.o.t.$$

$$= (1 - \frac{1}{r-1})\binom{n}{2} + O(n^2)$$

l.o.t = lower order term

What is $\lim_{n\to\infty} \frac{t(n,G)}{\binom{n}{2}}$?

Theorem 3 (Erdös-Simonovits-Stone 1946) For any G, $\lim_{n\to\infty} \frac{t(n,G)}{\binom{n}{2}} = 1 - \frac{1}{\chi(G)-1}$

Theorem 4 (Erdös-Stone) For all integers $r \ge 2$ and $s \ge 1$ and every $\varepsilon > 0$, there exists an integer n_0 such that every graph with $n \ge n_0$ vertices and at least $e(T_{n,r-1}) + \varepsilon n^2$ edges contains $K_r^{(s)}$ as a subgraph.

For any graph H, we define $H^{(s)}$ as follows:

1. $V(H^{(s)}) = \{V(H) \times [s]\}$ 2. $E(H^{(s)}) = \{(u, i) \sim (v, j): \text{ if } uv \in E(H)\}$

 ${\cal H}^{(s)}$ is called the blow-up graph. ${\cal K}^{(s)}_r = {\cal T}_{rs,r}$

Let G be a graph with $\chi(G) = r$ (means G is r-colorable). We can color V(G) so that the endpoints of each edge receive different colors. We can see $G \subseteq K_r^{(s)}$ for some s.

$$t(n,G) \ge (1 - \frac{1}{r-1})\binom{n}{2} + O(n^2)$$

Turán graph $T_{n,r-1}$ is G-free and has $(1 - \frac{1}{r-1})\binom{n}{2} + O(n^2)$ edges. Because $G \subseteq T_{n,r-1}$, then $\chi(G) \leq r-1$

$$t(n,G) \le \left(1 - \frac{1}{r-1}\right)\binom{n}{2} + \varepsilon n^2 \text{ for any } \varepsilon > 0$$
$$1 - \frac{1}{r-1} \le \frac{t(n,G)}{\binom{n}{2}} \le 1 - \frac{1}{r-1} + \varepsilon$$

Szemerédi's Regularity Lemma \Rightarrow Blow-up Lemma \Rightarrow Erdös-Stone Theorem \Rightarrow Erdös-Simonovits-Stone Theorem

Lemma 2 (Szemerédi's Regularity Lemma) For any $\varepsilon > 0$, and every integer $m \ge 1$, there exists an integer M such that every graph of order at least m admits an ε -regular partition $\{v_0, v_1, ..., v_k\}$ with $m \le k \le M$.

Definition 4 A,B are disjoint sets. The density $d(A,B) = \frac{e(A,B)}{|A||B|}$.

Definition 5 (A,B) is called ε -regular if for all $X \subseteq A, Y \subseteq B$ with $|X| \ge \varepsilon |A|$ and $|Y| \ge \varepsilon |B|$,

$$|d(X,Y)| - d(A,B)| \le \varepsilon.$$

(ε is a very small constant $0 < \varepsilon < 1$).

Definition 6 A partition $\{v_0, v_1, ..., v_n\}$ of V(G) is called ε -regular if

- 1. $|v_0| \leq \varepsilon |v|, v_0$ -exceptional set
- 2. $|v_1| = ... = |v_k|$
- 3. All but at most εk^2 of the pairs (v_i, v_j) with $1 \le i < j \le k$ are ε -regular.

Lemma 3 Suppose (A, B) is ε -regular. Then for any $Y \subseteq B$ with $|Y| \ge \varepsilon |B|$, then all but $\varepsilon |A|$ of the vertices in A have (each) at least $(d - \varepsilon)|Y|$ neighbors in Y.

Proof of Lemma: Let $X = \{v \in A : |N(v) \cap Y \le (d - \varepsilon)|Y|\}$. If $|X| \ge \varepsilon |A|$, $e(X, Y) \le |X|(d - \varepsilon)|Y|$ $d(X, Y) < d - \varepsilon$ Contradiction.

Lemma 4 (Blow-Up) For all $d \in (0,1]$ and $\Delta \geq 1$, there exists an $\varepsilon_0 > 0$ with the following property: If G is any graph, H is a subgraph with $\Delta(H) \leq \Delta$, $S \in N$ and R is any regularity graph of G with $\varepsilon \leq \varepsilon_0$, $l \geq \frac{s}{s_0}$ then $H \subseteq R_s \Rightarrow$ $H \subseteq G$. (Δ = maximum degree)

Proof of Lemma: By regularity lemma,

- 1. $|v_1| = |v_2| = \dots = |v_k| = l$
- 2. $|v_0| \leq \varepsilon l$
- 3. All but εk^2 pairs of (v_i, v_j) are ε -regular.

For vertex $v_i \in V(H)$, we maintain a set of candidates, S_i . $v_i \to V_{f(i)}$ where f(i) is the index of partition that v_i belongs to.

Initially, $S_i = V_{f(i)}$. For *i* from 1 to |H| pick $v_i \in S_i$ then update S_j for all $v_i \in N_H(v_i)$.

$$S_j \leftarrow N_G(v_i) \cap S_j$$
$$|S_j^{new}| \ge (d - \varepsilon)|S_j^{old}|$$

For any time, $|S_j| \ge (d - \varepsilon)^{\triangle} l$. Choose ε such that $(d - \varepsilon)^{\triangle} \ge (\triangle + 1)\varepsilon$. So, $|S_j| \ge (d - \varepsilon)^{\triangle} l \ge (\triangle + 1)\varepsilon l$. Since $(\triangle + 1)\varepsilon l \ge \triangle \varepsilon l$, the procedure of selecting v_i will not stop. We construct $H \subseteq G$.

Theorem 5 (Erdös-Stone) Suppose G has $e(K_{r-1}^{(s)}) + \lambda n^2$ edges then there exists N for $n > N_{\lambda}$ G contains $K_r^{(s)}$.

Sketch of proof:

$$K_r^{(s)} \subseteq R^{(s)}$$
$$K_r \subseteq R' \subseteq R$$

We define R' as follows:

1. $v_i v_j \in E(R')$ if (v_i, v_j) are ε -regular and $d(v_i, v_j) \ge \lambda$. We show R' has enough edges $e(R') > (1 - \frac{1}{r-1})\binom{k}{2}$.