Math 776 Graph Theory Lecture Notes Extremal Graph Theory

Lectured by Lincoln Lu
Transcribed by Sandy Johnson

Theorem 1 (Mantel 1907) The maximum number of edges in an n-vertex triangle-free simple graph is $\left\lfloor n^{2} / 4\right\rfloor$.

Definition 1 A graph G is \mathbf{H}-free if G has no subgraph isomorphic to H.
A triangle-free graph is C_{3} free.
Example 1 Bipartite graphs are C_{3} free since they contain no odd cycles.
Proof of Theorem 1: Let G be a triangle-free graph. Let x be a vertex of G with maximum degree. Let $k=d(x)$ be the degree of x. Let $N(x)$ be the set of neighbors of x. Since G is triangle-free, there are no edges whose endpoints are both in $N(x) . \overline{N(x)}$ forms a vertex cover. The number of edges $e(G)$ satisfies

$$
\begin{aligned}
e(G) & \leq \sum_{y \in N(x)} d(y) \\
& \leq \sum_{y \in N(x)} k \\
& =k \cdot|\overline{N(x)}| \\
& =k(n-k) \\
& \leq\left(\frac{k+(n-k)}{2}\right)^{2} \\
& =\frac{n^{2}}{4}
\end{aligned}
$$

Since $e(G)$ is an integer,

$$
e(G) \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor
$$

This upper bound is reachable by

$$
\begin{gathered}
K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil} \\
\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n^{2}}{4}\right\rfloor
\end{gathered}
$$

Case 1: n is even

$$
n=2 k
$$

So,

$$
\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil=k^{2}
$$

and

$$
\left\lfloor\frac{n^{2}}{4}\right\rfloor=k^{2}
$$

Case 2: n is odd

$$
n=2 k+1
$$

So,

$$
\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil=k(k+1)=k^{2}+k
$$

and

$$
\left\lfloor\frac{n^{2}}{4}\right\rfloor=\left\lfloor\frac{(2 k+1)^{2}}{4}\right\rfloor=\left\lfloor k^{2}+k+\frac{1}{4}\right\rfloor=k^{2}+k
$$

Definition $2 A$ Turán Graph $T_{n, r}$ is a complete r-partite graph with n vertices whose partite sets differ in size by at most 1.

Theorem 2 (Turán, 1941) Among the n-vertex simple graphs with no $r+1$ clique, $T_{n, r}$ has the maximum number of edges.

Lemma 1 Among simple r-partite graphs with n-vertices, the Turán graph is the unique graph with the most edges.

Proof of Lemma: Let G be a simple r-partite graph with the most edges.

1. G must be a complete r-partite graph.
2. Any two partite sets of G differ in size by at most one.

Prove 2. by contradiction. Say $\left|v_{1}\right| \leq\left|v_{2}\right|-2$. Pick any vertex in v_{2} and move it up into v_{1}. Call this graph G^{\prime}.

$$
\begin{aligned}
e\left(G^{\prime}\right) & =e(G)-d x^{o l d}+d x^{\text {new }} \\
& =e(G)-\left(n-\left|v_{2}\right|\right)+\left(n-\left|v_{1}\right|-1\right) \\
& =e(G)+\left|v_{2}\right|-\left|v_{1}\right|-1 \\
& >e(G)
\end{aligned}
$$

Contradiction.
Say $n=a r+b, 0 \leq b \leq r$. So, $\mathrm{n}=\underbrace{(a+1)+\ldots+(a+1)}_{b}+\underbrace{a+\ldots+a}_{r-b}$.
Hence, $T_{n, r}$ has the most edges among r-partite simple graphs.

Proof of Turán Theorem:

Claim: Among graphs with no $r+1$ clique, the maximum is achieved by an r-partite graph. For each G, construct H satisfies:

1. H is r-partite.
2. $e(G) \leq e(H)$.

Prove by induction on r.

Initial Case:

$(r=1): G$ has no edges, i.e. G is K_{2} free. This case is trivial.
($r=2$): Mantel's Theorem

Inductive Hypothesis:

Suppose the claim is true for r. For $r+1$, let G be a graph containing no K_{r+2}. Let x be a vertex with maximum degree k. The induced subgraph on $N(x)$ contains no K_{r+1}. By inductive hypothesis, there is an r-partite graph H^{\prime} with $e\left(G_{N(x)}\right) \leq e\left(H^{\prime}\right)$. Let H be the graph joining $\overline{N(x)}$ and H^{\prime}.

1. H is an $r+1$ partite graph.
2.

$$
\begin{aligned}
e(H) & =|\overline{N(x)}| k+e\left(H^{\prime}\right) \\
& \geq \sum_{y \in N(x)} d y+e\left(G_{N(x)}\right) \\
& \geq e(G)
\end{aligned}
$$

By the lemma, $T_{n, r}$ has the most edges.
Definition 3 Turán number $t(n, G)$ is the maximum number of edges that an n-vertex G-free simple graph can have.

$$
\begin{aligned}
t\left(n, K_{r}\right) & =e\left(T_{n, r-1}\right) \\
& =\binom{n}{2}-b\binom{a+1}{2}-(r-1-b)\binom{a}{2}
\end{aligned}
$$

When $b=0$,

$$
\begin{aligned}
t\left(n, K_{r}\right) & =\binom{n}{2}-(r-1)\binom{\frac{n}{r-1}}{2} \\
& \approx\left(1-\frac{1}{r-1}\right)\binom{n}{2}+\text { l.o.t. } \\
& =\left(1-\frac{1}{r-1}\right)\binom{n}{2}+O\left(n^{2}\right)
\end{aligned}
$$

l.o.t $=$ lower order term

What is $\lim _{n \rightarrow \infty} \frac{t(n, G)}{\binom{n}{2}}$?

Theorem 3 (Erdös-Simonovits-Stone 1946) For any G, $\lim _{n \rightarrow \infty} \frac{t(n, G)}{\binom{n}{2}}=$ $1-\frac{1}{\chi(G)-1}$

Theorem 4 (Erdös-Stone) For all integers $r \geq 2$ and $s \geq 1$ and every $\varepsilon>0$, there exists an integer n_{0} such that every graph with $n \geq n_{0}$ vertices and at least $e\left(T_{n, r-1}\right)+\varepsilon n^{2}$ edges contains $K_{r}^{(s)}$ as a subgraph.

For any graph H, we define $H^{(s)}$ as follows:

1. $V\left(H^{(s)}\right)=\{V(H) \times[s]\}$
2. $E\left(H^{(s)}\right)=\{(u, i) \sim(v, j):$ if $u v \in E(H)\}$
$H^{(s)}$ is called the blow-up graph.
$K_{r}^{(s)}=T_{r s, r}$
Let G be a graph with $\chi(G)=r$ (means G is r-colorable). We can color $V(G)$ so that the endpoints of each edge receive different colors. We can see $G \subseteq K_{r}^{(s)}$ for some s.

$$
t(n, G) \geq\left(1-\frac{1}{r-1}\right)\binom{n}{2}+O\left(n^{2}\right)
$$

Turán graph $T_{n, r-1}$ is G-free and has $\left(1-\frac{1}{r-1}\right)\binom{n}{2}+O\left(n^{2}\right)$ edges. Because $G \subseteq T_{n, r-1}$, then $\chi(G) \leq r-1$

$$
\begin{gathered}
t(n, G) \leq\left(1-\frac{1}{r-1}\right)\binom{n}{2}+\varepsilon n^{2} \text { for any } \varepsilon>0 . \\
1-\frac{1}{r-1} \leq \frac{t(n, G)}{\binom{n}{2}} \leq 1-\frac{1}{r-1}+\varepsilon
\end{gathered}
$$

Szemerédi's Regularity Lemma \Rightarrow Blow-up Lemma \Rightarrow Erdös-Stone Theorem \Rightarrow Erdös-Simonovits-Stone Theorem

Lemma 2 (Szemerédi's Regularity Lemma) For any $\varepsilon>0$, and every integer $m \geq 1$, there exists an integer M such that every graph of order at least m admits an ε-regular partition $\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}$ with $m \leq k \leq M$.

Definition $4 A, B$ are disjoint sets. The density $d(A, B)=\frac{e(A, B)}{|A||B|}$.
Definition $5(A, B)$ is called ε-regular if for all $X \subseteq A, Y \subseteq B$ with $|X| \geq$ $\varepsilon|A|$ and $|Y| \geq \varepsilon|B|$,

$$
|d(X, Y)|-d(A, B) \mid \leq \varepsilon
$$

(ε is a very small constant $0<\varepsilon<1$).
Definition $6 A$ partition $\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ of $V(G)$ is called ε-regular if

1. $\left|v_{0}\right| \leq \varepsilon|v|, v_{0}$-exceptional set
2. $\left|v_{1}\right|=\ldots=\left|v_{k}\right|$
3. All but at most εk^{2} of the pairs $\left(v_{i}, v_{j}\right)$ with $1 \leq i<j \leq k$ are ε-regular.

Lemma 3 Suppose (A, B) is ε-regular. Then for any $Y \subseteq B$ with $|Y| \geq \varepsilon|B|$, then all but $\varepsilon|A|$ of the vertices in A have (each) at least $(d-\varepsilon)|Y|$ neighbors in Y.
Proof of Lemma: Let $X=\{v \in A:|N(v) \cap Y \leq(d-\varepsilon)| Y \mid\}$. If $|X| \geq \varepsilon|A|$, $e(X, Y) \leq|X|(d-\varepsilon)|Y|$ $d(X, Y)<d-\varepsilon$ Contradiction.

Lemma 4 (Blow-Up) For all $d \in(0,1]$ and $\triangle \geq 1$, there exists an $\varepsilon_{0}>0$ with the following property: If G is any graph, H is a subgraph with $\triangle(H) \leq \triangle$, $S \in N$ and R is any regularity graph of G with $\varepsilon \leq \varepsilon_{0}, l \geq \frac{s}{s_{0}}$ then $H \subseteq R_{s} \Rightarrow$ $H \subseteq G .(\triangle=$ maximum degree $)$

Proof of Lemma: By regularity lemma,

1. $\left|v_{1}\right|=\left|v_{2}\right|=\ldots=\left|v_{k}\right|=l$
2. $\left|v_{0}\right| \leq \varepsilon l$
3. All but εk^{2} pairs of $\left(v_{i}, v_{j}\right)$ are ε-regular.

For vertex $v_{i} \in V(H)$, we maintain a set of candidates, $S_{i} . v_{i} \rightarrow V_{f(i)}$ where $f(i)$ is the index of partition that v_{i} belongs to.

Initially, $S_{i}=V_{f(i)}$. For i from 1 to $|H|$ pick $v_{i} \in S_{i}$ then update S_{j} for all $v_{j} \in N_{H}\left(v_{i}\right)$.

$$
\begin{gathered}
S_{j} \leftarrow N_{G}\left(v_{i}\right) \cap S_{j} \\
\left|S_{j}^{\text {new }}\right| \geq(d-\varepsilon)\left|S_{j}^{\text {old }}\right|
\end{gathered}
$$

For any time, $\left|S_{j}\right| \geq(d-\varepsilon)^{\triangle} l$. Choose ε such that $(d-\varepsilon)^{\triangle} \geq(\triangle+1) \varepsilon$. So, $\left|S_{j}\right| \geq(d-\varepsilon)^{\triangle} l \geq(\triangle+1) \varepsilon l$. Since $(\triangle+1) \varepsilon l \geq \triangle \varepsilon l$, the procedure of selecting v_{i} will not stop. We construct $H \subseteq G$.
Theorem 5 (Erdös-Stone) Suppose G has $e\left(K_{r-1}^{(s)}\right)+\lambda n^{2}$ edges then there exists N for $n>N_{\lambda} G$ contains $K_{r}^{(s)}$.

Sketch of proof:

$$
\begin{gathered}
K_{r}^{(s)} \subseteq R^{(s)} \\
K_{r} \subseteq R^{\prime} \subseteq R
\end{gathered}
$$

We define R^{\prime} as follows:

1. $v_{i} v_{j} \in E\left(R^{\prime}\right)$ if $\left(v_{i}, v_{j}\right)$ are ε-regular and $d\left(v_{i}, v_{j}\right) \geq \lambda$.

We show R^{\prime} has enough edges $e\left(R^{\prime}\right)>\left(1-\frac{1}{r-1}\right)\binom{k}{2}$.

