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1 Markov’s Inequality

Recall that our general theme is to upper bound tail probabilities, i.e., probabilities of the form
Pr(X ≥ c · E[X]) or Pr(X ≤ c · E[X]). The first tool towards that end is Markov’s Inequality.
Note. This is a simple tool, but it is usually quite weak. It is mainly used to derive stronger tail
bounds, such as Chebyshev’s Inequality.

Theorem 1 (Markov’s Inequality) Let X be a non-negative random variable. Then,

Pr(X ≥ a) ≤ E[X]

a
, for any a > 0.

Before we discuss the proof of Markov’s Inequality, first let’s look at a picture that illustrates the
event that we are looking at.

E[X] a

Pr(X ≥ a)

Figure 1: Markov’s Inequality bounds the probability of the shaded region.

Proof:[1] Suppose X is a discrete random variable, for simplicity.

E[X] =
�

x

x · Pr(X = x)

≥
�

x≥a

x · Pr(X = x)

≥ a ·
�

x≥a

·Pr(X = x)

= a · Pr(X ≥ a)

Rearranging, we get

Pr(X ≥ a) ≤ E[X]

a
.
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Proof:[2] Define a random variable Y as follows. Y =

�
1 if X ≥ a

0 otherwise.
Now, if X < a, Y = 0. Otherwise, X ≥ a, in which case Y = 1. In both cases, we have that
Y ≤ X

a . Note that we use the fact that X is a non-negative random variable in the first case.

Therefore, E[Y ] ≤ E[X]
a . However, since Y is an indicator random variable, E[Y ] = Pr(Y =

1) = Pr(X ≥ a). This implies that Pr(X ≥ a) ≤ E[X]
a .

Example. Let X be a random variable that denotes the number of heads, when n fair coins are
tossed independently. Using Linearity of Expectation, we get that E[X] = n

2 .

Plugging in a = 3n
4 in Markov’s Inequality, we get that Pr(X ≥ 3n

4 ) ≤ n/2
3n/4 = 2

3 . This is a quite
weak bound on the tail probability using Markov’s Inequality, since we intuitively know that X
should be concentrated very tightly around its mean. (If we toss 10,000 fair coins, we have a sense
that the probability of getting 7,500 or more heads is going to be very small.)

To illustrate this point further, consider Pr(X ≥ n). Plugging in a = n, we get Pr(X ≥ n) ≤
n/2
n = 1

2 . However, we know that Pr(X ≥ n) = Pr(X = n) = 1
2n , since outcomes of all n coin

tosses must be heads, when X = n.

�
The example above illustrates that often, the bounds given by Markov’s Inequality are quite

weak. This should not be surprising, however, since this bound only makes use of the expected
value of a random variable.

2 Chebyshev’s Inequality

In order to get more information about a random variable, we can use moments of a random
variable.

Definition 2 (Moment) The kth moment of a random variable X is E[Xk].

Higher moments often reveal more information about a random variable, which, in turn helps us
derive better bounds. However, there is a trade-off. It is often difficult to compute higher moments
in practical cases, e.g., while analyzing randomized algorithms. Now, let us look at the variance of
a random variable.

Definition 3 (Variance) The variance of a random variable X, denoted as Var[X], is E[(X −
E[X])2].

The variance of a random variable can be seen as the expected square of the distance of X, from
its expected value E[X]. Another way to look at Var[X] is as follows.

Var[X] = E
�
(X − E[X])2

�

= E
�
X2 − 2 ·X · E[X] + E[X]2

�

= E[X2]− E[2E[X] ·X] + E
�
E[X]2

�
(Linearity of Expectation)

= E[X2]− 2E[X] · E[X] + E[X]2 (2 and E[X] are constants)

= E[X2]− E[X]2.
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That is, the variance of X equals the difference between the second moment of X, and the square
of the expected value of X (i.e., the square of the first moment of X).

Now, we can derive Chebyshev’s Inequality, which often gives much stronger bounds than the
Markov’s Inequality.

Theorem 4 (Chebyshev’s Inequality) For any a > 0,

Pr(|X − E[X]| ≥ a) ≤ Var[X]

a2
.

Again, let us look at a picture that illustrates Chebyshev’s Inequality.

E[X]

a a

Pr((E[X]−X) ≥ a) Pr((X − E[X]) ≥ a)

Figure 2: Chebyshev’s Inequality bounds the probability of the shaded regions.

Proof:

Pr (|X − E[X]| ≥ a) = Pr
�
(X − E[X])2 ≥ a2

�
= Pr(Y ≥ a2)

Where, Y = (X − E[X])2. Note that Y is a non-negative random variable. Therefore, using
Markov’s Inequality,

Pr(Y ≥ a2) ≤ E[Y ]

a2
=

E
�
(X − E[X])2

�

a2
=

Var[X]

a2
.

Example. Again consider the fair coin example. Recall that X denotes the number of heads, when
n fair coins are tossed independently. We saw that Pr(X ≥ 3n

4 ) ≤ 2
3 , using Markov’s Inequality. Let

us see how Chebyshev’s Inequality can be used to give a much stronger bound on this probability.
First, notice that:

Pr

�
X ≥ 3n

4

�
= Pr

�
X − n

2
≥ n

4

�
≤ Pr

����X − n

2

��� ≥ n

4

�
= Pr

�
|X − E[X]| ≥ n

4

�
.

That is, we are interested in bounding the upper tail probability. However, as seen before,
Chebyshev’s Inequality upper bounds probabilities of both tails. In order to use Chebyshev’s
Inequality, we must first calculate Var[X]. First, we must characterize what kind of random
variable X is.
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Definition 5 (Binomial Random Variable) A random variable X is Binomial with parame-
ters n and p (denoted as X ∼ Bin(n, p)) if X takes on values 0, 1, . . . , n− 1, n, with the following
distribution.

Pr(X = j) =

�
n

j

�
pj(1− p)n−j .

A binomial random variable X ∼ Bin(n, p) denotes the number of successes (heads), when n
independent coins are tossed, with each coin having success (heads) probability of p. In our
example, X is a binomial random variable with parameters n and 1

2 . However, we consider the
more general case.

To compute Var[X], we need E[X] and E[X2]. For the case of Binomial Random variable,
E[X] = np can be computed easily, as seen before. However, computing E[X2] directly is quite
tedious. Therefore, we decompose X is the following manner.

For each coin toss i = 1, . . . , n, define an indicator r.v. Xi =

�
1 with probability p

0 with probability 1− p.

That is, Xi is 1 if the ith coin toss is heads, and 0 otherwise. It is easy to see that X =
�n

i=1Xi.
Before we show how the variance of X can be decomposed, we need the following definition.

Definition 6 (Covariance) The Covariance of random variables Xi and Xj, denoted as Cov(Xi, Xj),
is E [(Xi − E[Xi]) · (Xj − E[Xj ])] .

Cov(Xi, Xj) is a measure of correlation between Xi and Xj . It immediately follows from the
definition that Cov(Xi, Xj) = Cov(Xj , Xi). Another way to look at Cov(Xi, Xj) is as follows.

Cov(Xi, Xj) = E [(Xi − E[Xi]) · (Xj − E[Xj ])]

= E [XiXj −XiE[Xj ]−XjE[Xi] + E[Xi]E[Xj ]]

= E[XiXj ]− E[Xj ] · E[Xi]− E[Xi] · E[Xi] + E[E[Xi] · E[Xj ]]
(Using Linearity of Expectation)

= E[XiXj ]− E[Xi] · E[Xj ]

Now, we state the following theorem without proof.

Theorem 7

Var

�
n�

i=1

Xi

�
=

n�

i=1

Var[Xi] +
�

i,j
i�=j

Cov(Xi, Xj)

Consider the case where all Xi’s are mutually independent. Then, for any Xi, Xj , E[XiXj ] =
E[Xi] · E[Xj ], which implies that Cov(Xi, Xj) = 0. That is,

Theorem 8 (Linearity of Variance) If X1, X2, . . . , Xn are all mutually independent, then

Var

�
n�

i=1

Xi

�
=

n�

i=1

Var[Xi].
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Notes.

1. Linearity of Variance requires the independence of the random variables, whereas Linearity
of Expectation does not.

2. We do not need mutual independence between the random variables for Linearity of Variance.
A weaker notion called pairwise independence suffices. That is, for any distinct Xi, Xj , it is
sufficient to require Xi, Xj be independent.

Example: (Continued) In our coin toss example, all Xi’s are in fact mutually independent. There-
fore, Var[X] =

�n
i=1Var[Xi].

For any Xi, Var[Xi] = E[X2
i ] − E[Xi]

2. E[Xi] = Pr(Xi = 1) = p. Note that X2
i also has the

same distribution as Xi, and therefore, E[X2
i ] = p. So, Var[Xi] = p− p2 = p(1− p).

And therefore, Var[X] = np(1− p).

Theorem 9 (Variance of a Binomial Random Variable) If X ∼ Bin(n, p), then Var[X] =
np(1− p).

Therefore, in the case of fair coin tosses, Var[X] = n
4 . By Chebyshev’s Inequality,

Pr
����X − n

2

��� ≥ n

4

�
≤ (n/4)

(n/4)2
=

4

n
.

Recall that Markov’s Inequality gave us a much weaker bound of 2
3 on the same tail probability.

Later on, we will discover that using Chernoff Bounds, we can get an even stronger bound of

O
�

1
exp(n)

�
on the same probability. However, Chernoff Bounds require mutual independence,

whereas even the weaker notion of pairwise independence suffices for an application of Chebyshev’s
Inequality.

�
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