Definition [edit]

In short, a probability space is a measure space such that the measure of the whole space is equal to one.

The expanded definition is the following: a probability space is a triple (Ω, \mathcal{F}, P) consisting of:

- ullet the sample space Ω an arbitrary non-empty set,
- the σ -algebra $\mathcal{F}\subseteq 2^\Omega$ (also called σ -field) a set of subsets of Ω , called events, such that:
 - ullet ${\mathcal F}$ contains the sample space: $\Omega\in{\mathcal F}$,
 - ullet ${\mathcal F}$ is closed under complements: if $A\in {\mathcal F}$, then also $(\Omega\setminus A)\in {\mathcal F}$,
 - ullet ${\mathcal F}$ is closed under countable unions: if $A_i\in {\mathcal F}$ for $i=1,2,\ldots$, then also $(igcup_{i=1}^\infty A_i)\in {\mathcal F}$
 - The corollary from the previous two properties and De Morgan's law is that $\mathcal F$ is also closed under countable intersections: if $A_i \in \mathcal F$ for $i=1,2,\ldots$, then also $(\bigcap_{i=1}^\infty A_i) \in \mathcal F$
- ullet the probability measure $P:\mathcal{F}
 ightarrow [0,1]$ a function on \mathcal{F} such that:
 - P is countably additive (also called σ -additive): if $\{A_i\}_{i=1}^{\infty}\subseteq \mathcal{F}$ is a countable collection of pairwise disjoint sets, then $P(\bigcup_{i=1}^{\infty}A_i)=\sum_{i=1}^{\infty}P(A_i),$
 - ullet the measure of entire sample space is equal to one: $P(\Omega)=1$.